Report of Groundwater Sampling and Analyses For

JEA Ponte Vedra Drainage Improvements Ponte Vedra, Florida

MAE Project No.: 0021-0006A November 3, 2015

Prepared for:

Prepared by:

Almond Engineering, Inc. 6277 DuPont Station Court East, Suite 1 Jacksonville, Florida 32217

Attention: Ms. Hillary Almond, P.E.

Reference: Report of Groundwater Sampling

JEA Ponte Vedra Drainage Improvements

Ponte Vedra, Florida

MAE Project No. 0021-0006A

Dear Ms. Almond:

Meskel & Associates Engineering, PLLC (MAE) is pleased to provide you with this Report of Groundwater Sampling for Ponte Vedra Drainage improvements, located in Ponte Vedra, Florida.

If you have any questions or concerns, please contact the undersigned at (904) 519-6990.

Sincerely,

MESKEL & ASSOCIATES ENGINEERING, PLLCMAE FL Certificate of Authorization No. 28142

Mark R. Belyeu, P.G.

Senior Project Geologist

P. Rodney Mank, P.E.

Principal Engineer

Distribution: Ms. Hillary Almond, P.E. – Almond Engineering, P.E. 3 hard copies, 1 PDF

Phone: (904)519-6990 Fax: (904)519-6992

TABLE OF CONTENTS

Subje	ct		Page
1.0	INTRODUCT	ION	1
2.0	REPORT LIM	IITATIONS	1
3.0	SITE CONDIT	ΓΙΟΝS	2
4.0	NEARBY COM	NTAMINATED SOURCES	2
5.0	WATER SAM	IPLING AND ANALYTICAL RESULTS	2
6.0	CONCLUSION	NS AND PERMIT REQUEST	3
FIGUI	RES		
	Figure 1.	Site Vicinity Map	
	Figure 2.	Site Plan	
TABL	ES		
	Table 1.	Groundwater Analytical Results	
APPE	NDICES		
	Appendix A.	Groundwater Sampling Logs and Calibration Logs	
	Appendix B.	Laboratory Analytical Report and Chain of Custody Record	
	Appendix C	FDEP Contamination Locator Maps	

List of Acronyms and Abbreviations

BDLBelow Detection Limits
BLSBelow Land Surface
BTEXBenzene, Toluene, Ethyl benzene, and Xylenes
COCContaminants of Concern
DODissolved Oxygen
DPEDual Phase Extraction
MAEMeskel & Associates Engineering, PLLC.
EPAUnited States Environmental Protection Agency
FACFlorida Administrative Code
FDEPFlorida Department of Environmental Protection
FL-PROFlorida Petroleum Residual Organic (testing method)
GACGranular Activated Carbon
GCTLGroundwater Cleanup Target Levels (as defined in 62-777, FAC)
MSLMean Sea Level
MTBEMethyl Tert-Butyl Ether
NADCNatural Attenuation Default Concentrations
NPDESNational Pollutant Discharge Elimination System
NTUNephelometric Turbidity Units
PAHPolycyclic Aromatic Hydrocarbons
RAPRemedial Action Plan
SVESoil Vapor Extraction
TRPHTotal Recoverable Petroleum Hydrocarbons
VCOVerbal Change Order
VOAVolatile Organic Aromatics
μg/LMicrograms per Liter

Report of Groundwater Sampling

Ponte Vedra Drainage Improvements MAE Report No. 0021-0006A Prepared by:

MESKEL & ASSOCIATES ENGINEERING, PLLC 8963 WESTERN WAY, SUITE 12 JACKSONVILLE, FLORIDA 32256

GEOLOGY BUSINESS LICENSE NUMBER - GB683

In accordance with the provisions of Florida Statutes Chapter 492, this Groundwater Sampling Report for the Ponte Vedra Drainage Improvements Final Design located along San Juan Drive and Pablo Road in Ponte Vedra, St. Johns County, Florida has been prepared under the direct supervision of a Professional Geologist registered in the State of Florida. This report was prepared in accordance with generally accepted professional practices pursuant to Chapter 492 of the Florida Statutes. The data, findings, recommendations, specifications or professional opinions were prepared solely for the use of the Florida Department of Environmental Protection and Almond Engineering. Meskel & Associates Engineering, PLLC makes no other warranty, either expressed or implied, and is not responsible for the interpretation by others of these data.

Mark R. Belyeu P.G. Project Geologist

Licensed, Florida No. PG-2217

1.0 INTRODUCTION

Meskel & Associates Engineering, PLLC (MAE) has completed a groundwater sampling program to provide chemical background data to assist in the submittal of a Notice of Intent (NOI) to potentially discharge dewatering effluent to 'Waters of the State' through the Florida Department of Environmental Protection (FDEP) under the auspices of the Generic Permit for the Discharge of Produced Groundwater from Any Non-Contaminated Site Activity, FAC 62-621.300(2).

Project information was provided to us by Ms. Hillary Almond, P.E., with Almond Engineering, P.A. (Almond). We also downloaded the project Request for Proposal (RFP) issued by JEA and titled Solicitation for Participation in Engineering Services for Ponte Vedra Water Main and Force Main Replacement Solicitation Number 072-14. The RFP included the Project Description that detailed the planned construction.

MAE provided with an aerial photograph showing the general area of the project. The general project location is east of A1A and west of Ponte Vedra Boulevard along San Juan Drive, Pablo Road, and Pablo Drive in Ponte Vedra, St John's County, Florida. The general site location is shown on Figure 1.

It is understood that the pipelines constructed along the existing roadways will be constructed using traditional open-cut methods. The pipelines will have a minimum soil cover of either 30 inches (below unpaved areas) or 36 inches (below existing/future paved areas).

The subject project is located along San Juan Drive to the west of Lake Vedra to Pablo Road and terminates at the intersection of Pablo Road and Pablo Drive in Ponte Vedra, St. Johns County, Florida. The general site location is illustrated on **Figure 1** and consists of residential areas with Lake Vedra to the east and north (**Figure 2**).

2.0 REPORT LIMITATIONS

This report has been prepared for the exclusive use of Almond Engineering, P.A. for specific application to the proposed JEA Ponte Vedra Force Main & Water Main Replacement project. This groundwater evaluation was performed in accordance with generally accepted practices of this profession, undertaken in similar studies at the same time and in the same geographical area. We have endeavored to meet this standard of care, but may be limited by conditions encountered during performance, a client-driven scope of work, or inability to review information not received by the report date. Where appropriate, these limitations are discussed in the text of the report, and an evaluation of their significance with respect to our findings has been conducted. No warranty, express or implied, is made.

The evaluation and recommendations contained in this report are based on the data obtained from the water samples collected for this project. The scope of our services did not include any environmental assessment or testing for the presence or absence of hazardous or toxic materials in the soil, groundwater, or surface water above/beyond those parameters and chemical analytes examined. The collection of grab water samples, such as performed at this site, are of limited scope and cannot eliminate the potential that hazardous, toxic, or petroleum substances are present or have been released at the site beyond what is identified by the limited water sampling and chemical analyses. No limited groundwater sampling program can wholly eliminate uncertainty regarding

Groundwater Sampling Report Ponte Vedra Drainage Improvements MAE Report No. 0021-0006A

the potential for contamination in connection with a property. Performance of this practice is intended to reduce, but not eliminate, uncertainty regarding the potential for groundwater and surface water impacts. These risks may be further evaluated, but not eliminated, through additional research and/or chemical evaluation and assessment.

If changes in the design or location of the project occur, the conclusions and recommendations contained in this report may need to be modified. We recommend that these changes be provided to us for our consideration. MAE is not responsible for conclusions, interpretations, opinions or recommendations made by others based on the data contained in this report.

3.0 SITE CONDITIONS

The site at the time of our field exploration consisted of a manicured residential neighborhood within a planned golf community. The drilling operations and water sampling areas were within the JEA right of way.

4.0 NEARBY CONTAMINATED SOURCES

This investigation included a review of FDEP databases for nearby contaminated sites. The FDEP Contamination Locator Map (CLM) was consulted to evaluate properties near the area of the proposed pipe-line installation. In addition, the FDEP Institutional Controls Map was reviewed to evaluate sites within the specified 500-foot search radius.

The results of the FDEP database review indicated no impacted sites within the prescribed 500-foot radius of the proposed dewatering area.

5.0 WATER SAMPLING AND ANALYTICAL RESULTS

Access to and subsequent sampling of the groundwater was performed in-situ via direct push drilling techniques. A stainless steel sampling probe was advanced to a depth of 9-feet below land surface (bls).

Groundwater samples were collected from sample location B-1 and B-2 on September 21, 2015. During the sampling event, depth to water was measured directly because of the direct push methods being employed. However, groundwater was estimated between 6 and 8 feet below land surface during the grab sampling event. Although not necessary for grab sample collection, MAE promoted efforts to establish stable purging parameters at the respective sampling locations in general accordance with the FDEP Standard Operating Procedures (FS 2212) before the location was sampled. **Appendix A** contains the groundwater sampling log and laboratory equipment calibration sheets.

Following the purging activities, grab groundwater samples were collected from the direct boring locations using poly-tubing connected to a peristaltic pump. The collected samples were placed into laboratory-supplied bottles, stored on wet ice, and submitted to a State of Florida approved analytical laboratory, ALS Environmental (ALS) in Jacksonville, Florida. ALS is a NELAP-certified laboratory, Number E82502.

The groundwater samples were analyzed for the presence of Total Organic Carbon (TOC), pH, Benzene, Naphthalene, Hardness, Turbidity, and Total Recoverable Mercury, Arsenic, Cadmium,

Groundwater Sampling Report Ponte Vedra Drainage Improvements MAE Report No. 0021-0006A

Copper, Lead, Zinc, and Hexavalent Chromium. In addition, a single surface water sample was collected from Lake Vedra from the center span of the bridge along Pablo Road. The surface water sample was obtained using a dedicated Teflon bailer, which was descended to a depth of approximately 1.5 feet below the lake surface. The surface water samples were field analyzed and laboratory tested for the same parameters as the groundwater samples to offer comparison for possible surface water discharge points and present natural background levels. Copies of the groundwater analytical results are provided in **Appendix B**.

The results from the laboratory analysis of the groundwater samples indicated the tested analytes did not exhibit concentrations exceeding the FDEP Screening Values for Discharges into Fresh Water, in sample point B-1 or B-2 except for Total Organic Carbon (TOC) and pH (for sample point B-1), as defined in Chapter 62-621.300(2), F.A.C. The final TOC concentrations were 12.0 and 21.7 milligrams per liter (mg/L), respectively; the acceptable regulatory range for TOC is 10 mg/L. The final pH concentration was 5.93 in B-1; the acceptable regulatory range for pH is 6.0 to 8.5. In addition, surface water sample SW-1 exhibited a TOC concentration of 13.5 mg/L, which is also in excess of FDEP surface water standards. **Table 1** presents the analytical data and respective FDEP and JEA discharge limits.

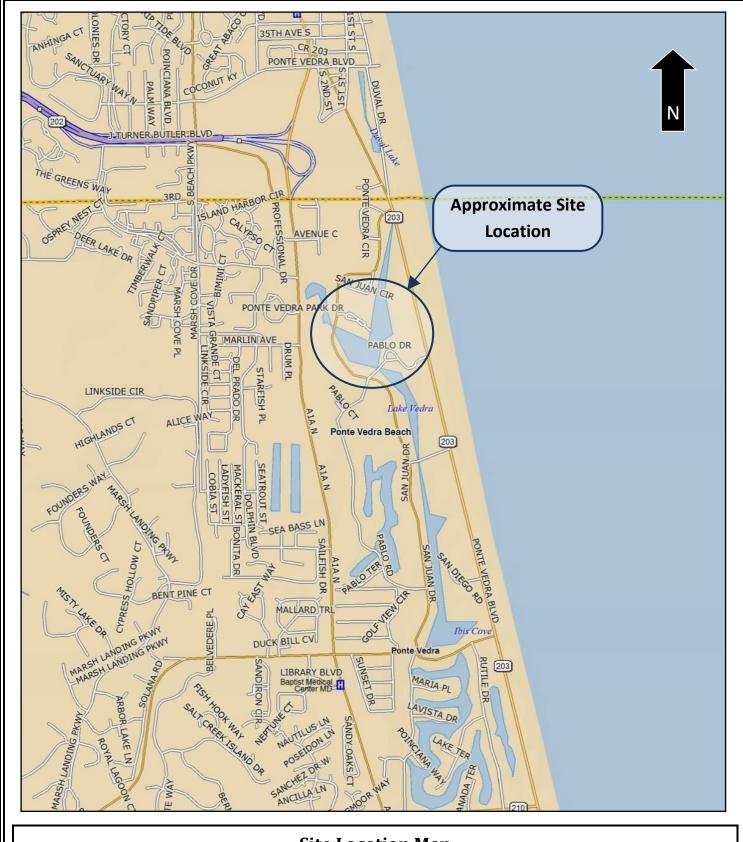
6.0 CONCLUSIONS AND PERMIT REQUEST

The results of laboratory analyses of groundwater samples collected indicate the FDEP screening values for *Surface Water Discharges into Fresh Waters* described in Chapter 62-621.300(2) FAC, Table I and the JEA's Maximum Allowable Discharge Limits are satisfactorily met for all listed parameters except for TOC (*under the FDEP guidelines, only*). Elevated TOC levels were identified in all samples collected, and they are a typical indicator of groundwater quality. Naturally occurring carbonates (as often found in beach-type sands) can contribute to TOC levels, and given the depth of sampling is a likely factor. However, the general location (*active golf course community*) of the site may offer an explanation to elevated TOC, in which the surface application of pesticides and nutrients to the area and possibly effect the TOC levels. Only additional testing and analyses can confirm or deny the TOC issue.

Under the new dewatering rules, when applying for a 'clean' generic permit, TOC is not a listed parameter, and concerns for exceedances of TOC are reserved when applying for generic petroleum discharge sites. Based on the information currently in hand, the client may request the dewatering activity be applied for as a clean site (as per FDEP guidelines). Additionally, MAE recommends the final dewatering design and Best Management Practices (BMPs) address include a plan to resolve the TOC issue, should it be necessary. However, the acquisition of a dewatering permit is not necessary if the dewatering plan includes the discharge of dewatering effluent into a JEA wastewater treatment system.

The review of regulatory database information indicates no facilities with groundwater impacts within 500 feet of the proposed dewatering operation (**Appendix C**). Based on this information and the analytical data, MAE conferred with the FDEP and subsequently identified the approach to securing a dewatering discharge permit.

If the proposed area of dewatering is anticipated for a construction activity exceeding 1 acre in size, then MAE recommends the construction contractor acquire the Dewatering Permit as part of the Construction General Permit (CGP). The Dewatering Permit will not add any additional cost to the CGP, provided it is applied for at the time of its CGP application. The development of dewatering


Groundwater Sampling Report Ponte Vedra Drainage Improvements MAE Report No. 0021-0006A

BMPs will still be required prior to initiation of the dewatering operation, as per the *Generic Permit* for the Discharge of Produced Groundwater from Any Non-Contaminated Site Activity, FAC 62-621.300(2). If the proposed area of dewatering is in excess of 500 feet from a contaminated site, and analytical data does not suggest gross groundwater contamination, then an application for a clean generic permit is suitable. Please be advised that the FDEP regulations state that the permittee is ultimately responsible for discharges to the waters of the state. Therefore, MAE recommends additional testing of groundwater to ensure TOC and field pH levels are not originating from a regulated source.

Following the commencement of dewatering operations, per Chapter 62-621FAC, BMPs, developed by the dewatering contractor, must be adhered to including record-keeping, and collection of effluent samples as required.

Site Location Map							
PREPARED BY PROJECT NAME							
S MAF	JEA Ponte Vedra Water Main & Force Main Replacemer Ponte Vedra Beach, Florida						
meskelengineering.com	REFERENCE	SCALE					
,	Delorme XMap 7.0	NTS					
PREPARED FOR	MAE PROJECT NO.	FIGURE NO.					
Almond Engineering, P.A.	0021-0006	1					

	REVISIONS								
DATE	BY	DESCRIPTION	DATE	BY	DESCRIPTION				
1			1						

Almond Engir		SHEET TITLE: Groundwater Sampling Location Plan	
DATE:	MAE PROJECT NO.	PROJECT NAME:	FIGURE NO.
10/8/2015	0021-0006	JEA Ponte Vedra Water Main & Force Main Replacement	2

TABLE 1 **Groundwater Analytical Summary**

Ponte Vedra Force Main Improvements St. Johns County, Florida MAE Project Number 0021-0003

Well Number Sample Date Parameter, Method, Unit	SW-1 9/21/2015	B-1 9/21/2015	B-2 9/21/2015	FDEP Screening Values for Discharges into Fresh Waters (Table I, Chapter 62- 621.300(2) FAC)	JEA's Maximum Allowable Discharge Limits
Benzene, 624/602, (ug/L)	0.210 U	0.210 U	0.210 U	1	NL
Naphthalene 601/625, (ug/L)	0.541 U	0.553 U	. 0564 U	100	NL
Total Organic Carbon SM 5310/C-2000 (2011), (mg/L)	13.5	12.0	21.7	10	NL
Arsenic	8.2	0.5 U	0.5 U	10	NL
Hexavalent Chromium, SM 3500- CrB, (ug/L)	1.1	1.0	0.5 U	11	NL
Cadmium, 200.8, (ug/L)	0.10U	0.10U	0.10 U	9.3	1,200
Calcium, 200.7, (mg/L)	NS	NS	NS	NL	NL
Copper, 200.8, (ug/L)	3.9	1.5	1.0	2.9	3,380
Lead, 200.8, (ug/L)	0.41 i	0.43 i	0.58	30	1,170
Mercury, 1631, (ug/L)	0.0018	0.10	0.010	12	600
Magnesium, 200.7 (mg/L)	NS	NS	NS		
Zinc, 200.8, (ug/L)	1.7 i	34.2	18.3	86	2,610
Hardness, SM 2340B, (mg/L)	NC	NC	NC	NL	NL
pH (field) Standard Units	8.45	5.93	6.01	6.0 – 8.5	5.5 – 12.0
Turbidity (field), NTU	9.14	21.7	25.0	NL	NL

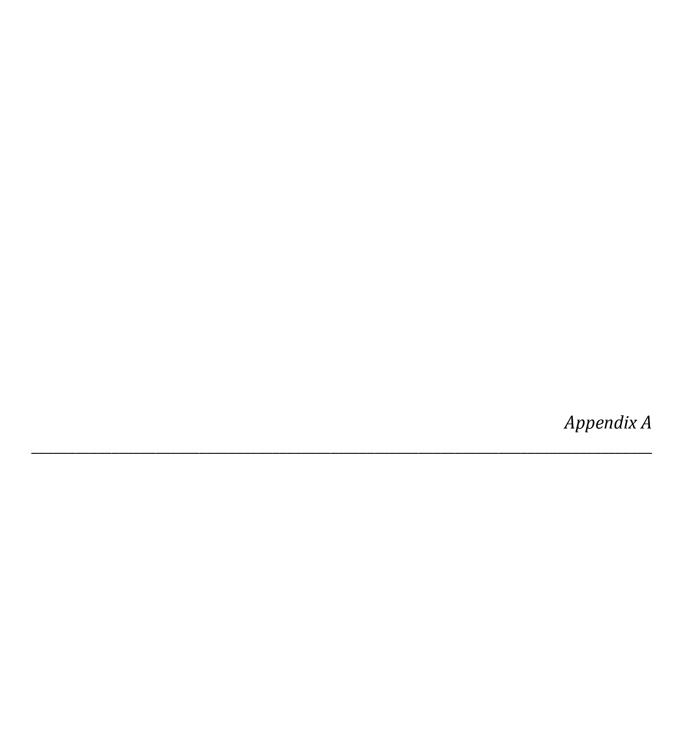
Notes:

FAC - Florida Administrative Code

FDEP – Florida Department of Environmental Protection

mg/L – milligrams per liter

ug/L – micrograms per liter NL – Not Listed


NS - Not Sampled

NTU – Nephelometric Turbidity Unit

U – Analyte not detected above laboratory practical quantitation limit i – result between laboratory method detection limit and laboratory practical quantitation limit

V – Indicates that the analyte was detected in both the sample and method blank

NC - Not Calculated

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE NAME: J'	SITE NAME: JEA PONTE VADRA FM2 WM REP. LOCATION:										
WELL NO:		VVVI	97. 38	SAMPLE					DATE:	9/21/1	5
PURGING DATA											
DIAMETER	WELL YOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH — STATIC DEPTH TO WATER) X WELL CAPACITY WELL YOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH — STATIC DEPTH TO WATER) X WELL CAPACITY										
	LUME PURGE: t if applicable)	1 WELL VOI	LUME = (TOT	AL WELL DEP	TH – STA	TIC DEPTH 1	TO WATER) X	WELL CAPAC	CITY		
830 830	NT VOLUME PU	IRGE: 1 FOL	= (= PLIMP VOI	feet -	RING CAPACI	feet) X	JBING LENGTH	gallons/fo		gallons
- TO THE RESERVE OF T	t if applicable)	OKOL. I LQO	II WENT TOE		20-20 No. 20-20				Name /		- gallons
INITIAL PL	JMP OR TUBING	3 \	FINAL PUN	P OR TUBING	allons + (1	ons/foot X	fee PURGING		gallons TOTAL VOL	
	WELL (feet):	NA		WELL (feet):	NA	INITIATE	IG ED AT: 11:08	ENDED AT	11:22	PURGED (g	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) μmhos/cm or μS/cm	DISSOLVED OXYGEN (circle units) mg/L or %saturation	TURBIDI' (NTUs)		e) (describe)
10:51					5.99	25.65	379	4,5%	428	CALEAG	
10:57		BSAUF	E.S		5.91	2544	367	7.8%	136.0	SIUT MAT	
11:05		SALLY			5.90	25-39	360	6.0%	80.6	TANTUR	Name of the Control o
11:12	(RA				5.92	25.40	357	4.0 %	38.5	PANTUR	
11:24					5.93	25.36	353	1.9 %	21.7	CLEA	2 MONE
			-								
			-	-							
			-								
WELL CA	PACITY (Gallon	s Per Foot): (0.75" = 0.02:	1" = 0.04:	1.25" = 0.0	6; 2 " = 0.1	6; 3 " = 0.37;	4 " = 0.65;	5 " = 1.02;	6" = 1.47:	12" = 5.88
TUBING II	NSIDE DÌA. CAF	PACITY (Gal./	=t.): 1/8" = 0.	.0006; 3/16 "	= 0.0014;	1/4" = 0.002	26; 5/16" = 0	.004; 3/8" =	0.006; 1/2	2" = 0.010;	5/8" = 0.016
PURGING	EQUIPMENT C	ODES: B	= Bailer;	BP = Bladder F		SP = Electric	Submersible Pu	mp; PP = F	Peristaltic Pur	np; O = O	ther (Specify)
SAMPLED	BY (PRINT) / A	FFILIATION:	/	SAMPLER(S)			AIA	SAMPLING	1110-	SAMPLIN	C 1
MRBE	HEU & N	(.VERCEU	ES/MAE	MrBele	~	M.Va	rela	INITIATED A	AT: 11:25	ENDED A	
PUMP OR		P		TUBING MATERIAL C	DE:	0.1		-FILTERED:		FILTER S	IZE: μm
	CONTAMINATION	ON: PUM	IP Y	MATERIAL C	TUBING	YOUT	eplaced)	on Equipment T		N	
SAM	PLE CONTAINE	R SPECIFICA	TION		SAMPLE PI	RESERVATION		INTEN	DED	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL ED IN FIELD ((mL) FINAL pH	ANALYSIS A	AND/OR E	EQUIPMENT CODE	FLOW RATE (mL per minute)
B-1	3	CG	40ml	HC+Ic	E		55.93	624	•	APD	5100
B-1	2	AG	40ml	Hel +Ic	E		<5.93	Too	1	APP	5100
13-1	1	PE	250ml	HNO2+I	Œ		55.93			APP	200
B-1	1	PE	500 ml	Ice			5.93	DH, H	exCr	APP	200
B-1	1	cg	500 ml	ILE			5.93	Lowle	v. Hg	APP	200
13-1	2	49	L	ICE			5.93	629		ADD	200
REMARKS		ロストロ	711	7							
MATERIA	L CODES:	ATED (= Clear Glass:	PF = Pol	yethylene;	PP = Polypropy	rlene; S = Sili	cone: T = T	eflon; O = C	Other (Specify)
	G EQUIPMENT			eristaltic Pump;	27 270 30 30		= Bladder Pump;	CONTRACTOR OF STATE	ctric Submersi		zanor (Opoony)
				se Flow Perista			v Method (Tubing			er (Specify)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE NAME:	EA PONT	E VEDRA	FM & U	JM REP	SIT	TE CATION:					
WELL NO:				SAMPLE		2			DATE:	9/21/15	
					PURG	ING DA	TA	-			
	R (inches): 1.5		0.25 C ER (inches):		LL SCREEN		STATIC D	DEPTH ER (feet):	/ 4	RGE PUMP T BAILER:	YPE PP
	WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable)										
FOLIDME	NT VOLUME D	URGE: 1 EQUI	= (= PLIMP VOI	feet -	ING CAPACI	feet) X	UBING LENGTH	gallons/fo	ot =	A gallons
	t if applicable)	DRGE. TEQUI	PINIENT VOL		allons + (ns/foot X	feet	Processing and a second	gallons	= gallons
INITIAL PL	JMP OR TUBIN	G .	FINAL PUN	IP OR TUBIN	500303335070007 5M	DURCIN	C	PURGING		TOTAL VOI	♥ 5470.0430,0000
	WELL (feet):	NA	DEPTH IN	WELL (feet):	NA	INITIATE	DAT: 12 15	ENDED AT:	12:45	PURGED (gallons):
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) μmhos/cm or μS/cm	OXYGEN (circle units) mg/L or %saturation	TURBIDI (NTUs)		
12:32			DIES		6.36	28.90	322	23.0%	71.6	Yello	MIN INTE
12:40	10	ZAB SAM	1100		6.07	29.06	320	10,2%	35.8	> 'i	1 17011
1):45	-				6.01	29.08	320	84%	25.0	t)	NONE
	-		-								
			-								
WELL CA	PACITY (Gallor	ns Per Foot): 0	. 75" = 0.02;	1" = 0.04;		6; 2 " = 0.1			5 " = 1.02;	6" = 1.47;	12" = 5.88
		PACITY (Gal./F			" = 0.0014;	55000 CO	and the last	100 mm	I see chara trans	2" = 0.010;	5/8" = 0.016
PURGING	EQUIPMENT (CODES: B	= Bailer;	BP = Bladder		LING DA	Submersible Pu	imp; PP = P	eristaltic Pur	np; 0 = 0	Other (Specify)
SAMPLED	BY (PRINT) / A	AFFILIATION: VERCELES	MAE	SAMPLER(S) SIGNATUR	F(S):	Venel	SAMPLING INITIATED A	T: 12:4	SAMPLIN ENDED	NG 12:58
PUMP OR	TUBING WELL (feet):	JA		TUBING MATERIAL C	i Gad:	E		D-FILTERED: Y		FILTER S	SIZE: μm
	CONTAMINATI		P Y		TUBING		eplaced)	DUPLICATE		N	
SAM	PLE CONTAIN	ER SPECIFICA	TION		SAMPLE PR	RESERVATIO	N	INTEND	ED	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATUSED		TOTAL VOL ED IN FIELD (mL) FINAL	ANALYSIS A		CODE CODE	(mL per minute)
B-2	3	CG	40 ml	1	Œ		56.01	624	-	APP	£100
B-2	2	AG	4041	HU+	IŒ		≤6.0	1 TOC		APP	£ 100
132	1	PE	250ml	HN103+	ICE		≤6.0	1 META	LS	APP	e 700
B2	1	PE	500ml	ICE			46.0	1 pH, HEX	CR.	APP	2 200
13-2	ı	ca	500 ml	ICE			56.0	1 LOW LE		APP	2 200
B-2	2	AG	16	ICE			€6.0	1 625	- 0	APP	200
RÉMARKS			0.								
MATERIA	SATURAT L CODES:	AG = Amber (= Clear Glass;	DE - Dal	yethylene;	PP = Polyprop	ylene; S = Silio	one T-1	eflon; O =	Other (Specify)
	G EQUIPMENT			eristaltic Pump			Bladder Pump;		tric Submers		other (openiy)
				se Flow Perist				g Gravity Drain);		er (Specify)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE JEA PONTE VEDRA FM & WM 12EP SITE LOCATION:										
WELL NO: $SW-1$ SAMPLE ID: $SW-1$ DATE: $9/21/15$										
PURGING DATA										
WELL DIAMETER (inches): TUBING DIAMETER (inches): WELL SCREEN INTERVAL DEPTH: feet to feet TO WATER (feet): PURGE PUMP TYPE OR BAILER:										
WELL VOLUME PURGE:	1 WELL VOLU	JME = (TOTA	L WELL DEP						DAILER.	+
(only fill out if applicable)		= (feet –		feet) X		gallons/foo		gallons
(only fill out if applicable)	JRGE: 1 EQUII	PMENT VOL.	= PUMP VOL	JME + (TUB	ING CAPACIT	TY X TU	JBING LENGTH) + FLOW CE	LL VOLUME	
	_			llons + (ns/foot X	feet) +	gallons =	gallons
INITIAL PUMP OR TUBING DEPTH IN WELL (feet):	JA	DEPTH IN W	P OR TUBING /ELL (feet):	NA	PURGING	DAT: NA	PURGING ENDED AT:	NA	TOTAL VOLUM PURGED (gallor	
TIME VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) µmhos/cm or (IS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDIT (NTUs)	Y COLOR (describe)	ODOR (describe)
13:12 (SUR	FACE WA	TER GO	AB	845	29:34	584	180.9%	9.14	CLEAR	VONE
								-		
WELL CAPACITY (Gallon TUBING INSIDE DIA. CAR				1.25 " = 0.06				5" = 1.02; 0.006: 1/2'		= 5.88 = 0.016
PURGING EQUIPMENT C			P = Bladder P			Submersible Pu		eristaltic Pum		
CAMPLED BY (DDINT) / A	EEU LATIONI.		CAMPLED(C)		LING DA	TA	T		c I	
SAMPLED BY (PRINT) / A MR BEN EN EN EN	VERCELES	MAE	SAMPLER(S)	ZIGNATURI Z	_ M.	Verel	SAMPLING INITIATED A	13/30 T:	SAMPLING ENDED AT:	13:49
PUMP OR TUBING	NA		TUBING MATERIAL CO	Q.	NA		-FILTERED: Y		FILTER SIZE:	μm
DEPTH IN WELL (feet): FIELD DECONTAMINATION	ON: PUMF		TENIAL CO	TUBING	Y N(re		DUPLICATE:		(N)	
SAMPLE CONTAINE	R SPECIFICAT			SAMPLE PF	RESERVATIO		INTEND	ED S		MPLE PUMP
SAMPLE # ID CODE CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		TOTAL VOL ED IN FIELD (r	nL) FINAL	ANALYSIS A			LOW RATE L per minute)
SW-1 3	CU	40 ml	HUL +I			58.45	624		01	NA
SW-1 Z	AG	40 ml	HER+I	Œ		58,45	Toc		(i)	1
Sw-1 1		250 ml,	HNO3+I	u		58.4	5 METAL		3/	
SW-1 1		500 W	ICE			8.45	pH He		<i>y</i>	
SW-1 1		500 ml	ICE			845	Lowler	J. Hg	,	
SW-1 Z REMARKS:	19	16	ILE			8.45	62	5		W
MATERIAL CODES:	AG = Amber G	Glass; CG =	Clear Glass;	PE = Poly	yethylene;	PP = Polypropy	lene; S = Silic	one; T = Te	eflon; O = Othe	r (Specify)
SAMPLING EQUIPMENT		PP = After Per PP = Reverse		B = Bai tic Pump;		Bladder Pump; Method (Tubing		ric Submersib	ole Pump; r (Specify)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Certificate of Calibration Multi-Parameter Water Quality



Equipment Type:	YSI 556				
<u>Date</u>	September 17, 2015				
Serial #	14A100121	NOTES:			
Calibration Standard # 1	pH 4.01				
Calibration Standard # 2	pH 7.00				
Calibration Standard # 3	pH 10.00				
Calibration Standard # 4	100% D.O Saturation				
Calibration Standard # 5	Zobell ORP Solution				
Calibration Standard # 6	1000uS Conductivity				
Calibration Standard # 7					
Calibration Standard # 8					
Calibration Standard # 9					
<u>Lot # (s)</u>	Conductivity 5a115z	4.01pH 9k300	7pH 44252	10рН аН255	ORP15J100237
	exp. 10-2016	exp.9-2016	exp.6-2016	exp.8-2016	exp.9-2017
Ambient Temperature	23°C (73.4°F)				
Instrument Reading; Calibrated	pH 4.01	pH 7.01	pH 10.04	Cond. 3000uS	
	237.5mV ORP	8.56 mg/L D.O.			
Calibrated By:		Signature:			

Certificate of Calibration Turbidity Meters

Equipment Type:	Hach2100Q		
<u>Date</u>	September 17, 2015	NOTES:	
<u>Serial #</u>	13120C030053		
<u>Calibration Standard # 1</u>	10NTU		
Calibration Standard # 2	20NTU		
Calibration Standard # 3	100NTU		
Calibration Standard # 4	800NTU		
<u>Lot # (s)</u>	268401		
Expiration Date(s)	N/A		
Ambient Temperature	24°C (75.2°F)		
Instrument Reading: Calibrated	10.01 NTU	20.2 100 799 20.2	
<u>Calibrated By:</u>	Brian Gibson	Signature:	

Service Request No:J1507498

Mark Belyeu Meskel and Associates Engineering 8936 Western Way Jacksonville, FL 32256

Laboratory Results for: JEA Ponte Vedra FM & WM Replacement

Dear Mark,

Enclosed are the results of the sample(s) submitted to our laboratory September 21, 2015 For your reference, these analyses have been assigned our service request number **J1507498**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 4410. You may also contact me via email at Jerry.Allen@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Jerry Allen

Project Manager

SAMPLE DETECTION SUMMARY

CLIENT ID: B-1	Lab ID: J1	507498-	001	Lab ID: J1507498-001					
Analyte	Results	Flag	MDL	PQL	Units	Method			
Copper, Total	1.5		0.3	1.0	ug/L	200.8			
Lead, Total	0.43	1	0.12	0.50	ug/L	200.8			
Zinc, Total	34.2		1.6	5.0	ug/L	200.8			
Chromium, Hexavalent	0.0010		0.0005	0.0010	mg/L	SM 3500-Cr			
рН	6.59				pH Units	SM 4500-H+			
Carbon, Total Organic (TOC)	12.0		0.09	1.0	mg/L	SM 5310 B			

CLIENT ID: B-2	Lab ID: J1507498-002						
Analyte	Results	Flag	MDL	PQL	Units	Method	
Copper, Total	1.0		0.3	1.0	ug/L	200.8	
Lead, Total	0.58		0.12	0.50	ug/L	200.8	
Zinc, Total	18.3		1.6	5.0	ug/L	200.8	
рН	6.82				pH Units	SM 4500-H+	
Carbon, Total Organic (TOC)	21.7		0.09	1.0	mg/L	SM 5310 B	

CLIENT ID: SW-1	Lab ID: J1507498-003					
Analyte	Results	Flag	MDL	PQL	Units	Method
Arsenic, Total	8.2		0.5	1.0	ug/L	200.8
Copper, Total	3.9		0.3	1.0	ug/L	200.8
Lead, Total	0.14	I	0.12	0.50	ug/L	200.8
Zinc, Total	1.7	1	1.6	5.0	ug/L	200.8
Chromium, Hexavalent	0.0011		0.0005	0.0010	mg/L	SM 3500-Cr
pH	8.69				pH Units	SM 4500-H+
Carbon, Total Organic (TOC)	13.5		0.09	1.0	mg/L	SM 5310 B

Service Request: J1507498

Date Received: 9/21/15

Client: Meskel and Associates Engineering

JEA Ponte Vedra FM & WM Replacement/0021-0006

Sample Matrix: Water

Project:

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

Sample Receipt

Three water samples were received for analysis at ALS Environmental on 9/21/15. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at \leq 6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Volatile Organic Analyses:

No significant data anomalies were noted with this analysis.

Semi-Volatile Organic Analyses:

No significant data anomalies were noted with this analysis.

Metals Analyses:

No significant data anomalies were noted with this analysis.

General Chemistry Analyses:

The matrix spike recovery of 0% for Hexavalent Chromium for sample J1507498-001 was outside the ALS control limit due to the possible reducing characteristic of the sample matrix. As per the methodology, a tenfold dilution of the samples was prepared, and analyzed. The Laboratory Control Sample (LCS) for the batch was within control limits; the diluted matrix spike was 68%. The low matrix spike recovery suggests the potential a low bias may exist for this sample. The sample result is flagged to indicate the variance. No further corrective action was appropriate.

Method SM3500-CrB: The Relative Percent Difference (RPD) criterion for the replicate analysis of analyte(s) in J1507498-001 is not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

<u>Subcontracted Analytical Parameters:</u>

An aliquot of the samples were delivered to ALS in Holland, MI for 1631 determination. The certified analytical report has been included in its entirety in Appendix A: Subcontracted Analytical Results.

Approved by Date 9/30/2015

State Certifications, Accreditations, and Licenses

Agency	Number	Expire Date
Department of Defense	66206	9/20/2016
Florida Department of Health	E82502	6/30/2016
Georgia Department of Natural Resources	958	6/30/2016
Kentucky Division of Waste Management	63	6/30/2016
Louisiana Department of Environmental Quality	02086	6/30/2016
Maine Department of Health and Human Services	2015002	2/3/2017
North Carolina Department of Environment and Natural Resources	527	12/31/2015
Pennsylvania Department of Environmental Protection	68-04835	8/31/2016
South Carolina Department of Health and Environmental Control	96021001	6/30/2016
Texas Commision on Environmental Quality	T104704197-13-5	5/31/2016
Virginia Environmental Accreditation Program	460191	12/14/2015

Data Qualifiers

Florida-DEP

- ! Data deviates from historically established concentration ranges
- * Not reported due to interference
- ? Data is rejected and should not be used
- A Value reported is the arithmetic mean of two or more determininations
- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- E Extra samples were taken at composite stations
- H Value based on field kit determination; results may not be accurate.
- I The reported value is between the laboratory method detection limit and the laboratory PQL.
- J Estimated value.
- K Off scale low. The value is less than the lowest calibration standard.
- L Off scale high. The analyte is above the acceptable level of quantitation.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified.
- N Presumptive evidence of presence of material.
- O Sampled, but analysis lost or not performed
- Q Sample held beyond the acceptable holding time.
- R Significant rain in the past 48 hours (typically in excess of 0.5 inches)
- T Estimated value, less than the MDL
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- X Insufficient individuals were present in the sample to achieve a minimum of 280 organisms for identification (Stream Condition Index Analysis only)
- Y The laboratory analysis was from an unpreserved or improperly preserved sample.
- Z Too many colonies were present, the numeric value represents the filtration volume

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Client: Meskel and Associates Engineering Service Request:J1507498

Project: JEA Ponte Vedra FM & WM Replacement/0021-0006

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
J1507498-001	B-1	9/21/2015	1125
J1507498-002	B-2	9/21/2015	1246
J1507498-003	SW-1	9/21/2015	1330

Page 7 of 46

Analytical Report

Client: Meskel and Associates Engineering

Service Request: J1507498

Date Collected: 09/21/15 11:25 **Project:** JEA Ponte Vedra FM & WM Replacement/0021-0006

Sample Matrix: Water **Date Received:** 09/21/15 15:05

Sample Name: B-1 Units: ug/L

Lab Code: J1507498-001 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 624

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
Benzene	0.210 U	1.00	0.210	1	09/22/15 21:31	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	108	68 - 118	09/22/15 21:31	
4-Bromofluorobenzene	103	78 - 129	09/22/15 21:31	
Dibromofluoromethane	102	80 - 114	09/22/15 21:31	
Toluene-d8	97	87 - 118	09/22/15 21:31	

Analytical Report

Client: Meskel and Associates Engineering

Service Request: J1507498

Project: JEA Ponte Vedra FM & WM Replacement/0021-0006

Date Collected: 09/21/15 11:25

Sample Matrix: Water

Date Received: 09/21/15 15:05

Sample Name: B-1

Lab Code:

J1507498-001

Units: ug/L
Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 625 **Prep Method:** Method

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Naphthalene	0.553 U	5.21	0.553	1	09/23/15 18:04	9/22/15	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	67	33 - 133	09/23/15 18:04	
2-Fluorobiphenyl	59	22 - 105	09/23/15 18:04	
2-Fluorophenol	41	10 - 69	09/23/15 18:04	
Nitrobenzene-d5	59	10 - 123	09/23/15 18:04	
Phenol-d6	31	10 - 59	09/23/15 18:04	
p-Terphenyl-d14	67	28 - 120	09/23/15 18:04	

Analytical Report

Service Request: J1507498

Client: Meskel and Associates Engineering

Project: JEA Ponte Vedra FM & WM Replacement/0021-0006 Date Collected: 09/21/15 11:25

Sample Matrix: Water Date Received: 09/21/15 15:05

Sample Name: B-1 Basis: NA

Lab Code: J1507498-001

Inorganic Parameters

Analysis Analyte Name Method Result **PQL** MDL Dil. Date Analyzed Date Extracted Q Units Arsenic, Total 200.8 0.5 U ug/L 1.0 0.5 09/28/15 14:48 09/22/15 Cadmium, Total 200.8 0.10 U ug/L 0.40 0.10 1 09/28/15 14:48 09/22/15 Copper, Total 200.8 0.3 09/22/15 1.5 ug/L 1.0 1 09/28/15 14:48 Lead, Total 200.8 0.43 I ug/L 0.50 0.12 1 09/28/15 14:48 09/22/15 Zinc, Total 200.8 34.2 09/22/15 ug/L 5.0 1.6 1 09/28/15 14:48

Analytical Report

Client: Meskel and Associates Engineering

Service Request: J1507498 **Date Collected:** 09/21/15 11:25 **Project:** JEA Ponte Vedra FM & WM Replacement/0021-0006

Date Received: 09/21/15 15:05 **Sample Matrix:** Water

Sample Name: B-1 Basis: NA

Lab Code: J1507498-001

General Chemistry Parameters

Analyte Name	Analysis Method	Result	Units	PQL	MDL	Dil.	Date Analyzed	Q
Carbon, Total Organic (TOC)	SM 5310 B	12.0	mg/L	1.0	0.09	1	09/28/15 15:36	
Chromium, Hexavalent	SM 3500-Cr B	0.0010	mg/L	0.0010	0.0005	1	09/21/15 16:45	
На	SM 4500-H+ B	6.59	pH Units	-	-	1	09/22/15 14:04	

Analytical Report

Client: Meskel and Associates Engineering

Service Request: J1507498 **Date Collected:** 09/21/15 12:46 JEA Ponte Vedra FM & WM Replacement/0021-0006

Sample Matrix: Water **Date Received:** 09/21/15 15:05

Sample Name: B-2 Units: ug/L

J1507498-002 Lab Code: Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 624

Project:

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
Benzene	0.210 U	1.00	0.210	1	09/22/15 21:56	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	109	68 - 118	09/22/15 21:56	
4-Bromofluorobenzene	103	78 - 129	09/22/15 21:56	
Dibromofluoromethane	104	80 - 114	09/22/15 21:56	
Toluene-d8	98	87 - 118	09/22/15 21:56	

Analytical Report

Client: Meskel and Associates Engineering

Service Request: J1507498

Date Collected: 09/21/15 12:46 **Project:** JEA Ponte Vedra FM & WM Replacement/0021-0006

Date Received: 09/21/15 15:05 **Sample Matrix:** Water

Sample Name: B-2 Units: ug/L

Lab Code: J1507498-002 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 625 **Prep Method:** Method

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Naphthalene	0.564 U	5.32	0.564	1	09/23/15 18:29	9/22/15	_

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	51	33 - 133	09/23/15 18:29	
2-Fluorobiphenyl	44	22 - 105	09/23/15 18:29	
2-Fluorophenol	31	10 - 69	09/23/15 18:29	
Nitrobenzene-d5	42	10 - 123	09/23/15 18:29	
Phenol-d6	26	10 - 59	09/23/15 18:29	
p-Terphenyl-d14	53	28 - 120	09/23/15 18:29	

Analytical Report

Service Request: J1507498

Client: Meskel and Associates Engineering

Project: JEA Ponte Vedra FM & WM Replacement/0021-0006 Date Collected: 09/21/15 12:46

Sample Matrix: Water Date Received: 09/21/15 15:05

Sample Name: B-2 Basis: NA

Lab Code: J1507498-002

Inorganic Parameters

Analysis Analyte Name Method Result **PQL** MDL Dil. Date Analyzed Date Extracted Q Units Arsenic, Total 200.8 0.5 U ug/L 1.0 0.5 09/28/15 14:53 09/22/15 Cadmium, Total 200.8 0.10 U ug/L 0.40 0.10 1 09/28/15 14:53 09/22/15 Copper, Total 200.8 0.3 09/22/15 1.0 ug/L 1.0 1 09/28/15 14:53 Lead, Total 0.58 200.8 ug/L 0.50 0.12 1 09/28/15 14:53 09/22/15 Zinc, Total 200.8 18.3 09/22/15 ug/L 5.0 1.6 1 09/28/15 14:53

Analytical Report

Client: Meskel and Associates Engineering

Service Request: J1507498

Sample Matrix: Water Date Received: 09/21/15 15:05

Sample Name: B-2 Basis: NA

Lab Code: J1507498-002

Project:

General Chemistry Parameters

Analyte Name	Analysis Method	Result	Units	PQL	MDL	Dil.	Date Analyzed	Q
Carbon, Total Organic (TOC)	SM 5310 B	21.7	mg/L	1.0	0.09	1	09/28/15 15:50	
Chromium, Hexavalent	SM 3500-Cr B	0.0005 U	mg/L	0.0010	0.0005	1	09/21/15 16:45	
pH	SM 4500-H+ B	6.82	pH Units	-	-	1	09/22/15 14:16	

Analytical Report

Client: Meskel and Associates Engineering

Service Request: J1507498 **Date Collected:** 09/21/15 13:30 JEA Ponte Vedra FM & WM Replacement/0021-0006

Project:

Date Received: 09/21/15 15:05 **Sample Matrix:** Water

Sample Name: SW-1 Units: ug/L

Lab Code: J1507498-003 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 624

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
Benzene	0.210 U	1.00	0.210	1	09/22/15 22:19	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	108	68 - 118	09/22/15 22:19	
4-Bromofluorobenzene	102	78 - 129	09/22/15 22:19	
Dibromofluoromethane	104	80 - 114	09/22/15 22:19	
Toluene-d8	98	87 - 118	09/22/15 22:19	

Analytical Report

Client: Meskel and Associates Engineering Service Request: J1507498

Project: JEA Ponte Vedra FM & WM Replacement/0021-0006 **Date Collected:** 09/21/15 13:30

Sample Matrix: Water **Date Received:** 09/21/15 15:05

Sample Name:

Lab Code:

SW-1

Units: ug/L

J1507498-003

Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 625 **Prep Method:** Method

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Naphthalene	0.541 U	5.10	0.541	1	09/23/15 18:54	9/22/15	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	63	33 - 133	09/23/15 18:54	
2-Fluorobiphenyl	57	22 - 105	09/23/15 18:54	
2-Fluorophenol	40	10 - 69	09/23/15 18:54	
Nitrobenzene-d5	58	10 - 123	09/23/15 18:54	
Phenol-d6	33	10 - 59	09/23/15 18:54	
p-Terphenyl-d14	63	28 - 120	09/23/15 18:54	

Analytical Report

Service Request: J1507498

Client: Meskel and Associates Engineering

Project: JEA Ponte Vedra FM & WM Replacement/0021-0006 Date Collected: 09/21/15 13:30

Sample Matrix: Water Date Received: 09/21/15 15:05

Sample Name: SW-1 Basis: NA

Lab Code: J1507498-003

Inorganic Parameters

Analysis Analyte Name Method Result **PQL** MDL Dil. Date Analyzed Date Extracted Q Units Arsenic, Total 200.8 8.2 ug/L 1.0 0.5 09/28/15 14:58 09/22/15 Cadmium, Total 200.8 0.10 U ug/L 0.40 0.10 1 09/28/15 14:58 09/22/15 Copper, Total 200.8 3.9 0.3 09/22/15 ug/L 1.0 1 09/28/15 14:58 Lead, Total 0.14 I 200.8 ug/L 0.50 0.12 1 09/28/15 14:58 09/22/15 Zinc, Total 200.8 09/22/15 1.7 I ug/L 5.0 1.6 1 09/28/15 14:58

Analytical Report

Client: Meskel and Associates Engineering

Service Request: J1507498 **Date Collected:** 09/21/15 13:30 JEA Ponte Vedra FM & WM Replacement/0021-0006

Project: Date Received: 09/21/15 15:05 **Sample Matrix:** Water

SW-1 **Sample Name:** Basis: NA

Lab Code: J1507498-003

General Chemistry Parameters

Analyte Name	Analysis Method	Result	Units	PQL	MDL	Dil.	Date Analyzed	Q
Carbon, Total Organic (TOC)	SM 5310 B	13.5	mg/L	1.0	0.09	1	09/28/15 16:07	
Chromium, Hexavalent	SM 3500-Cr B	0.0011	mg/L	0.0010	0.0005	1	09/21/15 16:45	
рH	SM 4500-H+ B	8.69	pH Units	_	-	1	09/22/15 14:22	

Analytical Report

Client: Meskel and Associates Engineering Service Request: J1507498

Project: JEA Ponte Vedra FM & WM Replacement/0021-0006 Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 JQ1507148-06
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 624

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
Benzene	0.210 U	1.00	0.210	1	09/22/15 13:30	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	107	68 - 118	09/22/15 13:30	
4-Bromofluorobenzene	103	78 - 129	09/22/15 13:30	
Dibromofluoromethane	101	80 - 114	09/22/15 13:30	
Toluene-d8	98	87 - 118	09/22/15 13:30	

Analytical Report

Client: Meskel and Associates Engineering Service Request: J1507498

Project: JEA Ponte Vedra FM & WM Replacement/0021-0006 Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 JQ1507122-01
 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 625 **Prep Method:** Method

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Naphthalene	0.530 U	5.00	0.530	1	09/23/15 13:27	9/22/15	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	65	33 - 133	09/23/15 13:27	
2-Fluorobiphenyl	71	22 - 105	09/23/15 13:27	
2-Fluorophenol	56	10 - 69	09/23/15 13:27	
Nitrobenzene-d5	69	10 - 123	09/23/15 13:27	
Phenol-d6	45	10 - 59	09/23/15 13:27	
p-Terphenyl-d14	71	28 - 120	09/23/15 13:27	

Analytical Report

Client: Meskel and Associates Engineering

Service Request: J1507498

Project: JEA Ponte Vedra FM & WM Replacement/0021-0006

Date Collected: NA

Sample Matrix: Water

Date Received: NA

Sample Name:

Method Blank

Basis: NA

Lab Code: J1507498-MB

Inorganic Parameters

	Analysis								
Analyte Name	Method	Result	Units	PQL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Total	200.8	0.5 U	ug/L	1.0	0.5	1	09/28/15 13:35	09/22/15	
Cadmium, Total	200.8	0.10 U	ug/L	0.40	0.10	1	09/28/15 13:35	09/22/15	
Copper, Total	200.8	0.3 I	ug/L	1.0	0.3	1	09/28/15 13:35	09/22/15	
Lead, Total	200.8	0.12 U	ug/L	0.50	0.12	1	09/28/15 13:35	09/22/15	
Zinc, Total	200.8	1.6 U	ug/L	5.0	1.6	1	09/28/15 13:35	09/22/15	

Analytical Report

Client: Meskel and Associates Engineering

Service Request: J1507498

Project: JEA Ponte Vedra FM & WM Replacement/0021-0006

Date Collected: NA

Sample Matrix: Water

Date Received: NA

Sample Name:

Method Blank

Basis: NA

Lab Code: J1507498-MB

General Chemistry Parameters

Analyte Name	Analysis Method	Result	Units	PQL	MDL	Dil.	Date Analyzed	Q
Carbon, Total Organic (TOC)	SM 5310 B	0.2 I	mg/L	1.0	0.09	1	09/28/15 15:08	
Chromium, Hexavalent	SM 3500-Cr B	0.0005 U	mg/L	0.0010	0.0005	1	09/21/15 16:45	

QA/QC Report

Client: Meskel and Associates Engineering Service Request: J1507498

Project: JEA Ponte Vedra FM & WM Replacement/0021-0006

Sample Matrix: Water

SURROGATE RECOVERY SUMMARYVolatile Organic Compounds by GC/MS

Analysis Method: 624

		1,2-Dichloroethane-d4	4-Bromofluorobenzene	Dibromofluoromethane
Sample Name	Lab Code	68 - 118	78 - 129	80 - 114
B-1	J1507498-001	108	103	102
B-2	J1507498-002	109	103	104
SW-1	J1507498-003	108	102	104
Lab Control Sample	JQ1507148-04	105	106	103
Duplicate Lab Control Sample	JQ1507148-05	102	104	102
Method Blank	JQ1507148-06	107	103	101

QA/QC Report

Client: Meskel and Associates Engineering Service Request: J1507498

Project: JEA Ponte Vedra FM & WM Replacement/0021-0006

Sample Matrix: Water

SURROGATE RECOVERY SUMMARYVolatile Organic Compounds by GC/MS

Analysis Method: 624

		Toluene-d8	
Sample Name	Lab Code	87 - 118	
B-1	J1507498-001	97	
B-2	J1507498-002	98	
SW-1	J1507498-003	98	
Lab Control Sample	JQ1507148-04	97	
Duplicate Lab Control Sample	JQ1507148-05	97	
Method Blank	JQ1507148-06	98	

QA/QC Report

Client: Meskel and Associates Engineering

Service Request:

J1507498

Project:

JEA Ponte Vedra FM & WM Replacement/0021-0006

Date Analyzed:

09/22/15

ug/L

Sample Matrix:

Water

Duplicate Lab Control Sample Summary

Volatile Organic Compounds by GC/MS

Analysis Method: 624 Units:

Basis: NA

Analysis Lot: 463369

Lab Control Sample JQ1507148-04 Duplicate Lab Control Sample JQ1507148-05

% Rec **Analyte Name** Result **Spike Amount** % Rec Result **Spike Amount** % Rec Limits **RPD Limit RPD** 106 Benzene 52.8 50.0 53.1 50.0 106 83-118 30 <1

QA/QC Report

Client: Meskel and Associates Engineering Service Request: J1507498

Project: JEA Ponte Vedra FM & WM Replacement/0021-0006

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY Semivolatile Organic Compounds by GC/MS

Analysis Method: 625 **Extraction Method:** Method

		2,4,6-Tribromophenol	2-Fluorobiphenyl	2-Fluorophenol
Sample Name	Lab Code	33 - 133	22 - 105	10 - 69
B-1	J1507498-001	67	59	41
B-2	J1507498-002	51	44	31
SW-1	J1507498-003	63	57	40
Method Blank	JQ1507122-01	65	71	56
Lab Control Sample	JQ1507122-02	71	67	53
Duplicate Lab Control Sample	JQ1507122-03	67	59	35

QA/QC Report

Client: Meskel and Associates Engineering Service Request: J1507498

Project: JEA Ponte Vedra FM & WM Replacement/0021-0006

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY Semivolatile Organic Compounds by GC/MS

Analysis Method: 625 **Extraction Method:** Method

		Nitrobenzene-d5	Phenol-d6	p-Terphenyl-d14
Sample Name	Lab Code	10 - 123	10 - 59	28 - 120
B-1	J1507498-001	59	31	67
B-2	J1507498-002	42	26	53
SW-1	J1507498-003	58	33	63
Method Blank	JQ1507122-01	69	45	71
Lab Control Sample	JQ1507122-02	65	44	69
Duplicate Lab Control Sample	JQ1507122-03	56	31	51

QA/QC Report

Client: Meskel and Associates Engineering Service Request: J1507498

Project: JEA Ponte Vedra FM & WM Replacement/0021-0006

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY Semivolatile Organic Compounds by GC/MS

Analysis Method: 625 **Extraction Method:** Method

	p-Terphenyl-d14						
Sample Name	Lab Code	28 - 120					
B-1	J1507498-001	67					
B-2	J1507498-002	53					
SW-1	J1507498-003	63					
Method Blank	JQ1507122-01	71					
Lab Control Sample	JQ1507122-02	69					
Duplicate Lab Control Sample	JQ1507122-03	51					

QA/QC Report

Client: Meskel and Associates Engineering

25.5

Service Request:

J1507498

Project:

Naphthalene

JEA Ponte Vedra FM & WM Replacement/0021-0006

Date Analyzed: **Date Extracted:** 09/23/15 09/22/15

Sample Matrix: Water

Duplicate Lab Control Sample Summary

Semivolatile Organic Compounds by GC/MS

Analysis Method: 625 **Units:**

ug/L

Prep Method: Method

Basis: Analysis Lot:

57

NA 463728

12

30

Lab Control Sample JQ1507122-02

40.0

Duplicate Lab Control Sample JQ1507122-03

40.0

21-133

% Rec **Analyte Name** Result **Spike Amount** % Rec Result **Spike Amount** % Rec Limits RPD **RPD Limit**

22.7

64

QA/QC Report

Client: Meskel and Associates Engineering

Project: JEA Ponte Vedra FM & WM Replacement/0021-0006 Date Analyzed: 09/28/15

Sample Matrix: Water

Lab Control Sample Summary Inorganic Parameters

Units:ug/L Basis:NA

Service Request: J1507498

Lab Control Sample

J1507498-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic, Total	200.8	49.8	50.0	100	85-115
Cadmium, Total	200.8	21.5	20.0	107	85-115
Copper, Total	200.8	53.4	50.0	107	85-115
Lead, Total	200.8	25.8	25.0	103	85-115
Zinc, Total	200.8	258	250	103	85-115

dba ALS Environmental

QA/QC Report

Client: Meskel and Associates Engineering Service Request: J1507498

JEA Ponte Vedra FM & WM Replacement/0021-0006

Date Collected: 09/21/15

Date Analyzed: 09/21/15

Sample Matrix: Water **Date Received:** 09/21/15

Replicate Sample Summary General Chemistry Parameters

Sample Name:

B-1

Lab Code:

Project

J1507498-001

Units: mg/L

Basis: NA

Duplicate

Sample

J1507498-

Sample

001DUP

Analysis Method Result **Analyte Name MDL** Result **RPD Limit** Average Chromium, Hexavalent SM 3500-Cr B 0.0010 0.0005 0.0010 0.0015 0.00125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

dba ALS Environmental

QA/QC Report

Client: Meskel and Associates Engineering Service Request: J1507498

Project JEA Ponte Vedra FM & WM Replacement/0021-0006

Date Collected: 09/21/15

Sample Matrix:

Date Received: 09/21/15

Water

Date Analyzed: 09/22/15

Replicate Sample Summary General Chemistry Parameters

Sample Name:

Lab Code:

B-1

Units: pH Units

J1507498-001

Basis: NA

Duplicate

Sample

J1507498-

Sample

001DUP

Analysis Method Result **Analyte Name MDL RPD Limit** Result Average pН SM 4500-H+B 6.59 6.55 6.57

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:Meskel and Associates EngineeringService Request:J1507498Project:JEA Ponte Vedra FM & WM Replacement/0021-0006Date Collected:09/21/15Sample Matrix:WaterDate Received:09/21/15

Date Analyzed: 09/21/15

Matrix Spike Summary Chromium, Hexavalent

 Sample Name:
 B-1
 Units:
 mg/L

 Lab Code:
 J1507498-001
 Basis:
 NA

Analysis Method: SM 3500-Cr B

Matrix Spike J1507498-001MS

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Chromium Hexavalent	0.0010	0.0012	0.100	0 *	85-115

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Meskel and Associates Engineering

JEA Ponte Vedra FM & WM Replacement/0021-0006

Sample Matrix: Water

Project:

Service Request: J1507498

Date Analyzed: 09/21/15 - 09/28/15

Lab Control Sample Summary General Chemistry Parameters

> Units:mg/L Basis:NA

Lab Control Sample

J1507498-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Carbon, Total Organic (TOC)	SM 5310 B	47.4	50.0	95	90-110
Chromium, Hexavalent	SM 3500-Cr B	0.0966	0.100	97	90-110

	Environmental
(AL 5)	Endironmentel

Cooler Receipt Form

Client;	Meskel	a Assoc	iales	Servic	e Reques	t #:		607498		
Project:	JEA NO									
Cooler recei	ved on _	9/21/15		and op	sened on	9/21/15	by	<u> </u>		
COURIER:	ALS UPS	FEDEX	Client C	Other		Airbill #				I MANTHONING AMA
1	Were custod:	y seals on	outside of co	oler?			Yes	NG)		
	If yes, how m	nany and w	here?				#: on I	id	other	
2	Were seals in	ntact and s	gnature and	date correct?			Yes	No	10/1	
3	Were custody	y papers pi	operly filled	out?			(°E)	No	N/A	
4	Temperature o	of cooler(s)	upon receipt	(Should be 0°C and	f ≤ 6°C)	1.34				
5	Thermometer	ID				T81		<u> </u>		
6	Temperature	Blank Pre	sent?				De .	No		
7	Were Ice or I	lce Packs p	resent				(Cg)	Ice Packs		No
8	Did all bottle	es arrive in	good condit	ion (unbroken,	etc)?		(res)	No	N/A	
9	Type of pack	ing materi	al present				Netting	Vial Holde	r (Bubbl	e Wrap
							Paper	Styrofoam	Other	N/A
10	Were all bott	tle labels c	omplete (san	nple ID, preserv	vation, etc	c)?	(Tes)	No	N/A	
11	Did all bottle	labels and	l tags agree v	with custody pa	pers?		0	No	N/A	
12	Were the cor	rect bottle	s used for the	e tests indicate	d?		<u> </u>	No	N/A	
13	Were all of the MNO3/pH/2 Preservative addition	H2SO4 pl		vith the appropriate 2/NaOH pH>9	e preservati NaOH p	Approximation .	Olphy 2	No	N/A	
14	Were all sam	ples receiv	ed within ar	nalysis holding	times?		(Yes)	No	N/A	
15	Were all VOA	vials free of:	air bubbles? If j	present, note belov	V		<u> 189</u>	No	N/A	
16	Where did th	e bottles o	riginate?				<u> </u>	Client		
***************************************	Sample	- IF)	Reagent	Lot #		ml added	Ilnitials F	Pate/Time	1	
	Ваптріс		Reagent	Bot II		mi added	Interacts 15	Accordance		
										
								····		
									New York	
	,,									
Additional c	omments and	l/or explan	ation of all d	liscrepancies no	ited abov	e:				
	e,									
All to make the source of the second sec	A.1.1.1									
									····	
Client appro	val to run sar	nples if dis	crepancies r	roted:				Date:		

Page 36 of 46

SEOT CONTOUNT TO THE SECOND TO SELVE OF CONTOUNT TO

36240515 CAS Contract SR#

> PAGE 9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011

U U

Francisco & 2010 611 616 C Francisco HCL HNO3 H2SO4 NaOH Zn. Acetate MeOH NaHSO4 REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION 8. Other RECEIVED BY 909400F Printed Name Date/Time Signature BILL TO: # Od <u>...</u> 11507498 IV. Data Validation Report with Raw Data V. Specialized Forms / Custom Report 0 REPORT REQUIREMENTS (LCS, DUP, MS/MSD as required) III. Results + QC and Calibration II. Results + QC Summaries RELINQUISHED BY 93 ANALYSIS REQUESTED (Include Method Numb . Resufts Only Edata Printed Name Date/Time Signature E 0 0 TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) while xolli (. C) 7 RECEIVED BY S 7 REQUESTED REPORT DATE 7 1 REQUESTED FAX DATE Ĺ ١ V STANDARD Š 501 ذ ڒ ۷ Printed Name Date/Time Signature Ì ١ Œ PRESERVATIVE 7 7 7 7 2 CUSTODY SEALS: < \bigcirc \bigcirc 0 NUMBER OF CONTAINERS RELINQUISHED BY mbelyeup meskelenjnemm com MARLON (BREENES MATRIX 30 3 519-6992 0021-0006 SAMPLING DATE TIME \$ 2. 4. 5,30 9/21/15 11:25 Printed Name Meskel & Associates Fraintening 2//12/ 9/10/ Western Way, Swith (904) Jacksonville, FL 32256 RECEIVED BY Project Number Email Address 0 SAMPLE RECEIPT CONDITION/COOLER TEMP. ののことはいる FN & WM REPACEMENT 0000 - DIO -Pinled Name WALLAN VERGEE ARYWAYS DIK SPECIAL INSTRUCTIONS/COMMENTS r. Ri CLENT SAMPLE ID 3000 RELINQUISHED 8Y 6 3 T (404) Date of part is Firm Mostel Sampler's Signature Project Menager Company/Address See OAPP Stgnature Page 37 of 46

Appendix A: Subcontracted Parameters

30-Sep-2015

Jerry Allen
ALS Environmental
9143 Philips Hwy
Suite 200
Jacksonville, FL 32256

Re: **J1507498** Work Order: **15091320**

Dear Jerry,

ALS Environmental received 3 samples on 23-Sep-2015 09:30 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested.

Sample results are compliant with NELAP standard requirements and QC results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 8.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

Electronically approved by: Bill Carey

Bill Carey

Project Manager

Certificate No: MN 532786

ADDRESS 3352 128th Avenue Holland, Michigan 49424-9263 | PHONE (616) 399-6070 | FAX (616) 399-6185

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Date: 30-Sep-15

Client: ALS Environmental

Project: J1507498 **Work Order: 15091320**

Work Order Sample Summary

Lab Samp ID Client Sample ID	<u>Matrix</u>	Tag Number	Collection Date	Date Received	Hold
15091320-01 J1507498-001	Water		9/21/2015 11:25	9/23/2015 09:30	
15091320-02 J1507498-002	Water		9/21/2015 12:46	9/23/2015 09:30	
15091320-03 J1507498-003	Water		9/21/2015 13:30	9/23/2015 09:30	

 $\mu g/L$

Micrograms per Liter

Client: ALS Environmental QUALIFIERS,

Project: J1507498
WorkOrder: 15091320

ACRONYMS, UNITS

Date: 30-Sep-15

Qualifier	<u>Description</u>
*	Value exceeds Regulatory Limit
a	Not accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
Е	Value above quantitation range
H	Analyzed outside of Holding Time
J	Analyte is present at an estimated concentration between the MDL and Report Limit
n	Not offered for accreditation
ND	Not Detected at the Reporting Limit
O P	Sample amount is > 4 times amount spiked Dual Column results percent difference > 40%
r R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
X	Analyte was detected in the Method Blank between the MDL and PQL, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
A	APHA Standard Methods
D	ASTM
E	EPA
SW	SW-846 Update III
Units Reported	Description

Page 41 of 46

QF Page 1 of 1

CLIENT: ALS Environmental Work Order: 15091320

Project: J1507498

Lab ID: 15091320-01A **Collection Date:** 9/21/2015 11:25:00 AM

Client Sample ID: J1507498-001 Matrix: WATER

Report Dilution

Analyses Result Limit MDL Qual Units Factor Date Analyzed

 MERCURY IN WATER
 E1631E
 Analyst: JEC

 Mercury
 0.10
 0.0025
 0.0010
 μg/L
 1
 9/29/2015 02:11 PM

Lab ID: 15091320-02A **Collection Date:** 9/21/2015 12:46:00 PM

Client Sample ID: J1507498-002 Matrix: WATER

Report Dilution

Analyses Result Limit MDL Qual Units Factor Date Analyzed

 MERCURY IN WATER
 E1631E
 Analyst: JEC

 Mercury
 0.010
 0.0010
 0.00040
 μg/L
 1
 9/29/2015 02:19 PM

Lab ID: 15091320-03A **Collection Date:** 9/21/2015 1:30:00 PM

Client Sample ID: J1507498-003 Matrix: WATER

Analyses Result Limit MDL Qual Units Factor Date Analyzed

MERCURY IN WATER E1631E Analyst: JEC

Mercury 0.0018 0.0010 0.00040 μg/L 1 9/29/2015 02:27 PM

Qualifiers: U - Analyzed for but Not Detected

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

P - Dual Column results RPD > 40%

B - Analyte detected in the associated Method Blank
* - Value exceeds Maximum Contaminant Level

E - Value above quantitation range
H - Analyzed outside of Hold Time

AR Page 1 of 1

Date: 30-Sep-15

Client: ALS Environmental

Work Order: 15091320 **Project:** J1507498

Date: 30-Sep-15

QC BATCH REPORT

Batch ID: 76622	Instrument ID HG2	2		Metho	d: E1631	E						
MBLK1	Sample ID: MBLK1-766	22-76622				Units: ng/L			An	alysis Date: 9	/29/2015 1	11:40 AM
Client ID:		Run ID	HG2_1	50929A		Sec	No: 348	1718	Prep Date:	9/29/2015	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	f %RPD	RPD Limit	Qual
Mercury		U	0.50	0		0	0			0		
MBLK2	Sample ID: MBLK2-766	22-76622				U	nits: ng/L	-	An	alysis Date: 9	/29/2015 1	12:26 PN
Client ID:		Run ID	HG2_1	50929A		Sec	No: 348 ′	1724	Prep Date:	9/29/2015	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	f %RPD	RPD Limit	Qual
Mercury		U	0.50	0		0	0			0		
MBLK3	Sample ID: MBLK3-766	22-76622				U	nits: ng/L	-	An	alysis Date: 9	/29/2015 ()1:49 PM
Client ID:		Run ID	HG2_1	50929A		Sec	No: 348	1739	Prep Date:	9/29/2015	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	f %RPD	RPD Limit	Qual
Mercury		U	0.50	0		0	0			0		
MS	Sample ID: 15091318-19AMS				U	nits: ng/L	-	An	alysis Date: 9	/29/2015 1	11:55 AN	
Client ID:	Run ID: HG2_150929A					SeqNo: 3481720			Prep Date:	9/29/2015	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	f %RPD	RPD Limit	Qual
Mercury		5.67	0.50	5	0.	95	94.4	71-125		0		
MS	Sample ID: 15091318-2	1AMS				U	nits: ng/L	-	An	alysis Date: 9	/29/2015 1	12:33 PN
Client ID:		Run ID	HG2_1	50929A		SeqNo: 3481725		Prep Date: 9/29/2015		DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	f %RPD	RPD Limit	Qual
Mercury		6.29	0.50	5	1.	01	106	71-125		0		
MSD	Sample ID: 15091318-1	9AMSD				U	nits: ng/L	-	An	alysis Date: 9	/29/2015 1	12:02 PN
Client ID:		Run ID	HG2_1	50929A		Sec	No: 348	1721	Prep Date:	9/29/2015	DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Mercury		5.67	0.50	5	0.	95	94.4	71-125	5	5.67 0	24	
MSD	Sample ID: 15091318-2						nits: ng/L			alysis Date: 9		12:41 PN
Client ID:		Run ID	HG2_1	50929A			No: 348 ′		Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	f %RPD	RPD Limit	Qual
Mercury		6.17	0.50	5	1.	01	103	71-125	6	5.29 1.93	24	

Note:

Client: ALS Environmental

Work Order: 15091320 **Project:** J1507498

QC BATCH REPORT

Batch ID: 76622	Instrument ID HG2			Metho	d: E1631	E							
LCS-OPR-START	Sample ID: OPR-START-76622-76622				Units: ng/L			A	Analysi	is Date:	9/29/2015 1	11:25 AM	
Client ID:		Run ID:	HG2_15	50929A		Se	qNo: 348	1716	Prep Date	e: 9/2 9	/2015	DF: 1	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD F Valu		%RPD	RPD Limit	Qual
Mercury		5.46	0.50	5		0	109	77-123		0			
	Sample ID: OPR-END-76622-76622												
LCS-OPR-END	Sample ID: OPR-END-76	6622-7662	2			L	Jnits: ng/l	-	A	Analysi	is Date:	9/29/2015 (2:49 PM
LCS-OPR-END Client ID:	Sample ID: OPR-END-76		2 HG2_1	50929A			Jnits: ng/l qNo: 348 °		Prep Date	,		9/29/2015 (DF: 1)2:49 PM
				50929A SPK Val	SPK Ref Value	Se				e: 9/29 Ref		DF: 1	02:49 PM Qual
Client ID:		Run ID:	HG2_1			Se	qNo: 348	1747 Control	Prep Date RPD F Valu	e: 9/29 Ref)/2015	DF: 1	

ALS Environmental Chain of Custody

9143 Philips Highway, Suite 200 • Jacksonville, FL 32256 • 904-739-2277 • FAX 904-739-2011

ALS Contact: Jerry Allen

15091320

J1507498 Project Number: Project Manager: Jerry Allen

Lab Code

J1507498-001

J1507498-002

J1507498-003

Sample ID

B-I

B-2

SW-1

of Cont.

Matrix

Water

Water

Water

Sample Date Time . Lab ID X 9/21/15 1125 Holland ALS X 9/21/15 1246 Holland ALS 9/21/15 1330 Holland ALS X

Special Instructions/Comments	Turnaround Requirements	Report Requirements	Invoice Information
	RUSH (Surcharges Apply)	I. Results Only	
	PLEASE CIRCLE WORK DAYS	II. Results + QC Summaries	PO#
	1 2 3 4 5	III. Results + QC and Calibration Summaries	53J1507498
	STANDARD	IV. Data Validation Report with Raw Data	
	Requested FAX Date:	PQL/MDL/J <u>Y</u>	Bill to
H - Test is On Hold P - Test is Authorized for Prep Only	Requested Report Date: -09/28/15	EDD <u>N</u>	

Relinquished By:

Airbill Number:

3.09

Client Name: ALS - JACKSONVILLE

Sample Receipt Checklist

Date/Time Received:

23-Sep-15 09:30

Work Order: <u>15091320</u>			Received b	y: <u>KR'</u>	<u>w</u>		
Checklist completed by Keith Wirringa	2	3-Sep-15	Reviewed by:	Bill Carey			23-Sep-15
eSignature		Date		eSignature			Date
Matrices: Water Carrier name: FedEx							
Shipping container/cooler in good condition?		Yes 🗸	No 🗆	Not Present			
Custody seals intact on shipping container/cool	er?	Yes 🗸	No 🗌	Not Present			
Custody seals intact on sample bottles?		Yes	No 🗌	Not Present	✓		
Chain of custody present?		Yes 🗸	No 🗌				
Chain of custody signed when relinquished and	received?	Yes 🗸	No 🗌				
Chain of custody agrees with sample labels?		Yes 🗸	No 🗌				
Samples in proper container/bottle?		Yes 🗸	No 🗌				
Sample containers intact?		Yes 🗸	No 🗌				
Sufficient sample volume for indicated test?		Yes 🗸	No 🗌				
All samples received within holding time?		Yes 🗸	No 🗌				
Container/Temp Blank temperature in complian	ce?	Yes 🗸	No 🗆				
Sample(s) received on ice?		Yes 🗸	No 🗆	ena.			
Temperature(s)/Thermometer(s): Cooler(s)/Kit(s):		3.0/3.0 C		SR2			
Date/Time sample(s) sent to storage:		9/23/2015	3:05:15 PM				
Water - VOA vials have zero headspace?		Yes	No	No VOA vials sub	mitted	✓	
Water - pH acceptable upon receipt?		Yes 🗸	No 🗆	N/A			
pH adjusted?		Yes	No 🗸	N/A			
pH adjusted by:		-					
Login Notes:							
:	=====			:====:			
Client Contacted:	Date Contacted:		Person	Contacted:			
Contacted By:	Regarding:						
Comments							
Comments:							
CorrectiveAction:							
	P	Page 46 of 46				SRC F	age 1 of 1

11/3/2015 View Map

Resources for:

- » Citizens
- » Educators
- » Businesses
- » Government

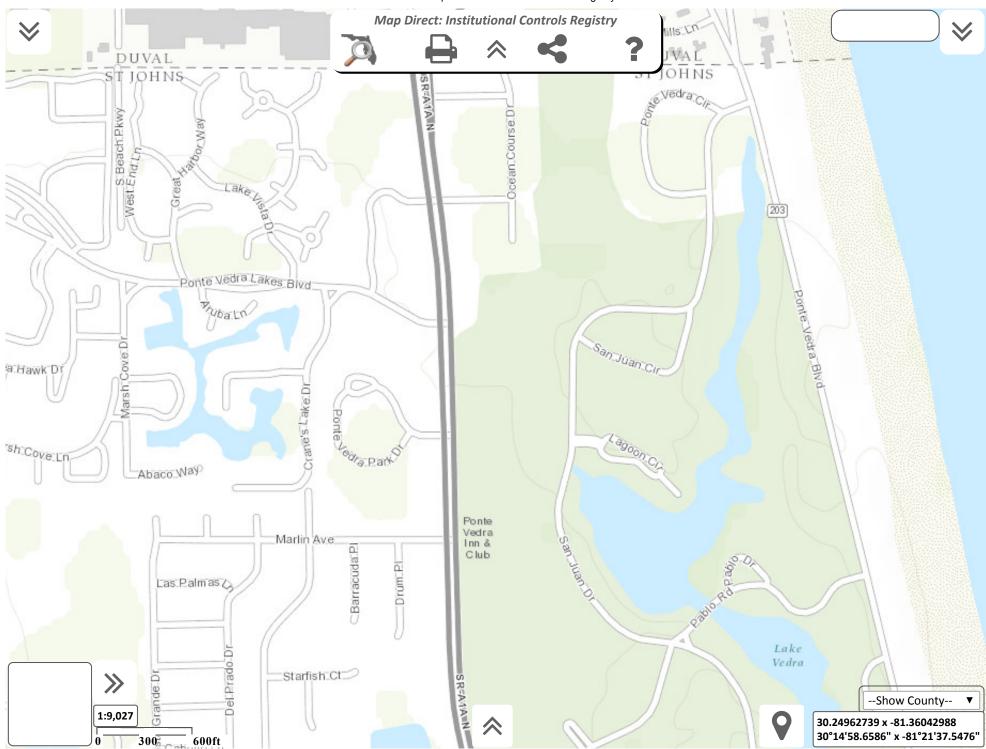
Information

- » Calendar
- » Contacts
- » News
- » Newsletters
- » Organizational Chart
- » Publications & Reports

OCULUS


Unless indicated, documents on this Web site are Adobe Acrobat files, and require the free reader software.

Contamination Locator Map


Search Criteria: Sites in JACKSONVILLE. Cleanup types: ▲ Brownfields ▲ Petroleum ▲ Superfund △ Other Waste Cleanup

For further information, please call the Waste Cleanup Hotline at (866)282-0787. **If you wish to search again, please** <u>click here</u>

Florida Department of Environmental Protection, Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400

DEP Home | About DEP | Contact Us | Search | Site Map

